Human-Centric Physical AI: Collaborative Robots and Beyond Training Course
Human-Centric Physical AI emphasizes collaboration between humans and AI-driven physical systems to enhance productivity and safety in various environments.
This instructor-led, live training (online or onsite) is aimed at intermediate-level participants who wish to explore the role of collaborative robots (cobots) and other human-centric AI systems in modern workplaces.
By the end of this training, participants will be able to:
- Understand the principles of Human-Centric Physical AI and its applications.
- Explore the role of collaborative robots in enhancing workplace productivity.
- Identify and address challenges in human-machine interactions.
- Design workflows that optimize collaboration between humans and AI-driven systems.
- Promote a culture of innovation and adaptability in AI-integrated workplaces.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Human-Centric Physical AI
- Overview of Physical AI and its human-centric approach
- The evolution of collaborative robots (cobots)
- Applications in industrial, healthcare, and service sectors
Collaborative Robots in Action
- Understanding cobot capabilities and limitations
- Key features: Safety, adaptability, and user-friendliness
- Hands-on demonstration of cobot interactions
Human-Machine Interaction
- Principles of effective collaboration between humans and AI
- Designing intuitive interfaces and workflows
- Addressing cognitive and ergonomic factors
Workplace Integration Strategies
- Assessing organizational readiness for AI adoption
- Creating AI-friendly work environments
- Training and upskilling employees for AI collaboration
Overcoming Challenges
- Resistance to AI adoption: Strategies and solutions
- Ethical considerations in AI-enabled workplaces
- Ensuring inclusivity and accessibility in AI design
Future Trends in Human-Centric Physical AI
- Emerging technologies in collaborative robotics
- Innovations in human-centered AI design
- Envisioning the future of AI-human collaboration
Summary and Next Steps
Requirements
- Basic understanding of AI concepts and automation
- Familiarity with workplace dynamics and team collaboration
Audience
- Workforce trainers
- HR professionals
- Managers integrating AI systems
Open Training Courses require 5+ participants.
Human-Centric Physical AI: Collaborative Robots and Beyond Training Course - Booking
Human-Centric Physical AI: Collaborative Robots and Beyond Training Course - Enquiry
Human-Centric Physical AI: Collaborative Robots and Beyond - Consultancy Enquiry
Consultancy Enquiry
Testimonials (1)
I feel I get the core skills I need to understand how the ROS fits together, and how to structure projects in it.
Dan Goldsmith - Coventry University
Course - ROS: Programming for Robotics
Upcoming Courses
Related Courses
Advanced Concepts in Physical AI: Designing Autonomous Systems
21 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at advanced-level professionals who wish to deepen their expertise in designing, programming, and deploying advanced autonomous systems.
By the end of this training, participants will be able to:
- Design advanced robotic systems with autonomous capabilities.
- Implement cutting-edge AI models for decision-making and control.
- Integrate and optimize real-time sensor data for enhanced performance.
- Utilize advanced simulation tools for system testing and validation.
- Address complex challenges in automation and deployment.
Aerial Robotics
21 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at engineers and developers who wish to design, develop, and test aerial vehicles through exploring various aerial robotics concepts and tools.
By the end of this training, participants will be able to:
- Understand the basics of aerial robotics.
- Model and design UAVs and quadrotors.
- Learn about the basics of flight control and motion planning.
- Learn how to use different simulation tools for aerial robotics.
Drone Programming with ArduPilot
14 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at developers and technical persons who wish to design and develop an unmanned drone.
By the end of this training, participants will be able to:
- Setup a suitable development environment.
- Select and apply the right tools for programming a drone.
- Understand and configure the firmware, middleware and API stack.
- Test and debug their code using drone simulation software.
Developing Intelligent Bots with Azure
14 HoursThe Azure Bot Service combines the power of the Microsoft Bot Framework and Azure functions to enable rapid development of intelligent bots.
In this instructor-led, live training, participants will learn how to easily create an intelligent bot using Microsoft Azure
By the end of this training, participants will be able to:
- Learn the fundamentals of intelligent bots
- Learn how to create intelligent bots using cloud applications
- Understand how to use the Microsoft Bot Framework, the Bot Builder SDK, and the Azure Bot Service
- Understand how to design bots using bot patterns
- Develop their first intelligent bot using Microsoft Azure
Audience
- Developers
- Hobbyists
- Engineers
- IT Professionals
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Developing a Bot
14 HoursA bot or chatbot is like a computer assistant that is used to automate user interactions on various messaging platforms and get things done faster without the need for users to speak to another human.
In this instructor-led, live training, participants will learn how to get started in developing a bot as they step through the creation of sample chatbots using bot development tools and frameworks.
By the end of this training, participants will be able to:
- Understand the different uses and applications of bots
- Understand the complete process in developing bots
- Explore the different tools and platforms used in building bots
- Build a sample chatbot for Facebook Messenger
- Build a sample chatbot using Microsoft Bot Framework
Audience
- Developers interested in creating their own bot
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Drone Fundamentals
7 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at anyone who wishes to understand the basics of UAS and apply drone technology in planning, operations, management, and analysis for various industries.
By the end of this training, participants will be able to:
- Gain fundamental knowledge of UAVs and drones.
- Learn about drone classifications and uses to find suitable UAVs that address different needs.
- Evaluate delivery options and regulations for the convenient operation of drones.
- Understand the risks and ethics of using drone technology.
- Explore future uses and capabilities of UAVs including integration with other technologies.
Drone and Photogrammetry for Infrastructure Supervision in Construction
21 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at beginner-level to intermediate-level participants who wish to learn how to use drones and photogrammetry techniques for infrastructure supervision in construction projects.
By the end of this training, participants will be able to:
- Understand the fundamentals of drones and photogrammetry.
- Develop and execute drone flight plans for construction sites.
- Perform photogrammetry tracking and create detailed maps and 3D models.
- Use photogrammetry data for infrastructure supervision and issue detection.
- Apply drone technology to improve construction site safety and efficiency.
Drones for Agriculture
21 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at agriculture technicians, researchers, and engineers who wish to apply aerial robotics in optimizing data collection and analysis for agriculture.
By the end of this training, participants will be able to:
- Understand drone technology and regulations related to it.
- Deploy drones to acquire, process, and analyze crop data to improve farming and agricultural methods.
Ethics and Governance in Physical AI Development
14 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at beginner-level to intermediate-level participants who wish to explore the ethical, legal, and governance aspects of Physical AI development.
By the end of this training, participants will be able to:
- Understand the ethical challenges associated with Physical AI.
- Identify key governance frameworks and regulations.
- Develop strategies for responsible AI development.
- Analyze case studies of ethical dilemmas in AI deployment.
Artificial Intelligence (AI) for Mechatronics
21 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at engineers who wish to learn about the applicability of artificial intelligence to mechatronic systems.
By the end of this training, participants will be able to:
- Gain an overview of artificial intelligence, machine learning, and computational intelligence.
- Understand the concepts of neural networks and different learning methods.
- Choose artificial intelligence approaches effectively for real-life problems.
- Implement AI applications in mechatronic engineering.
Introduction to Physical AI: Building Intelligent Machines
14 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at beginner-level participants who wish to explore the fundamentals of Physical AI, including its components, development process, and hands-on implementation of basic intelligent machines.
By the end of this training, participants will be able to:
- Understand the principles and potential applications of Physical AI.
- Design and prototype simple AI-powered robotic systems.
- Implement basic AI algorithms for machine perception and decision-making.
- Navigate and use tools like ROS for robotics development.
- Integrate hardware and software to build functional intelligent machines.
Physical AI for Robotics and Automation
21 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at intermediate-level participants who wish to enhance their skills in designing, programming, and deploying intelligent robotic systems for automation and beyond.
By the end of this training, participants will be able to:
- Understand the principles of Physical AI and its applications in robotics and automation.
- Design and program intelligent robotic systems for dynamic environments.
- Implement AI models for autonomous decision-making in robots.
- Leverage simulation tools for robotic testing and optimization.
- Address challenges such as sensor fusion, real-time processing, and energy efficiency.
ROS: Programming for Robotics
21 HoursIn this instructor-led, live training in Canada, participants will learn how to start using ROS for their robotics projects through the use of robotics visualization and simulation tools.
By the end of this training, participants will be able to:
- Understand the basics of ROS.
- Learn how to create a basic robotics project using ROS.
- Learn how to use different tools for robotics including simulation and visualization tools.
ROS for Mobile Robots using Python
21 HoursThis instructor-led, live training in Canada (online or onsite) is aimed at beginner-level to intermediate-level and potentially advanced-level robotics developers who wish to learn how to use ROS to program mobile robots using Python.
By the end of this training, participants will be able to:
- Set up a development environment that includes ROS, Python, and a mobile robot platform.
- Create and run ROS nodes, topics, services, and actions using Python.
- Use ROS tools and utilities to monitor and debug ROS applications.
- Use ROS packages and libraries to perform common tasks for mobile robots.
- Integrate ROS with other frameworks and tools.
- Troubleshooting and debugging ROS applications.
Smart Robots for Developers
84 HoursA Smart Robot is an Artificial Intelligence (AI) system that can learn from its environment and its experience and build on its capabilities based on that knowledge. Smart Robots can collaborate with humans, working along-side them and learning from their behavior. Furthermore, they have the capacity for not only manual labor, but cognitive tasks as well. In addition to physical robots, Smart Robots can also be purely software based, residing in a computer as a software application with no moving parts or physical interaction with the world.
In this instructor-led, live training, participants will learn the different technologies, frameworks and techniques for programming different types of mechanical Smart Robots, then apply this knowledge to complete their own Smart Robot projects.
The course is divided into 4 sections, each consisting of three days of lectures, discussions, and hands-on robot development in a live lab environment. Each section will conclude with a practical hands-on project to allow participants to practice and demonstrate their acquired knowledge.
The target hardware for this course will be simulated in 3D through simulation software. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.
By the end of this training, participants will be able to:
- Understand the key concepts used in robotic technologies
- Understand and manage the interaction between software and hardware in a robotic system
- Understand and implement the software components that underpin Smart Robots
- Build and operate a simulated mechanical Smart Robot that can see, sense, process, grasp, navigate, and interact with humans through voice
- Extend a Smart Robot's ability to perform complex tasks through Deep Learning
- Test and troubleshoot a Smart Robot in realistic scenarios
Audience
- Developers
- Engineers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To customize any part of this course (programming language, robot model, etc.) please contact us to arrange.